

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas $\begin{array}{c} {\rm Matem\'aticas~II~(MA1112)} \\ {\rm 3^{er}~Examen~Parcial~(38\,\%)} \\ {\rm Ene\text{-}Mar~2018} \end{array}$

Turno 1-2 Duración: 1 hora 50 minutos

Respuestas

Pregunta 1. (6 ptos.) Calcule $\lim_{x\to\infty} \left(x-\ln(\cosh(x))\right)$

Solución: Como la función logaritmo es continua en todo su dominio, $\lim_{x\to a} \ln(f(x)) = \ln(\lim_{x\to a} f(x))$ si $\lim_{x\to a} f(x)$ existe y pertenece a $(0,\infty)$. Luego,

$$\lim_{x \to \infty} \left(x - \ln(\cosh(x)) \right) = \lim_{x \to \infty} \left(\ln(e^x) - \ln(\cosh(x)) \right)$$

$$= \lim_{x \to \infty} \ln\left(\frac{e^x}{\cosh(x)} \right) = \ln\left(\lim_{x \to \infty} \frac{e^x}{\cosh(x)} \right)$$

$$= \ln\left(2 \lim_{x \to \infty} \frac{e^x}{e^x + e^{-x}} \right) = \ln\left(2 \lim_{x \to \infty} \frac{1}{1 + e^{-2x}} \right) = \ln(2)$$

Pregunta 2. (8 ptos.) Halle $\int \frac{\mathrm{d}x}{1 + \cosh(x)}$

Solución:

$$\int \frac{dx}{1 + \cosh(x)} = \int \frac{dx}{1 + \frac{e^x + e^{-x}}{2}} = \int \frac{2}{2 + e^x + e^{-x}} dx$$
$$= 2 \int \frac{e^x}{2e^x + (e^x)^2 + 1} dx = 2 \int \frac{e^x}{(e^x + 1)^2} dx = \frac{-2}{e^x + 1} + C$$

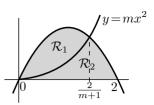
para cualquier valor de $C \in \mathbb{R}$.

Pregunta 3. Considere la función $f(x) = 2x - x^2$ definida sobre el intervalo [0,2] y sea $\mathcal{R} = \{(x,y) : x \in [0,2], 0 \le y \le f(x)\}.$

- a. (4 ptos.) Calcule el área de \mathcal{R}
- b. (4 ptos.) Para cada m > 0, la parábola $y = mx^2$ divide a \mathcal{R} en dos regiones: \mathcal{R}_1 y \mathcal{R}_2 . Halle el valor de m para que las áreas de \mathcal{R}_1 y \mathcal{R}_2 sean iguales.

Las curvas $y = 2x - x^2$ e $y = mx^2$ se cortan en el origen y en el punto $\left(\frac{2}{m+1}, \frac{4m}{(m+1)^2}\right)$, ya que

$$mx^2 = 2x - x^2 \implies x = 0 \text{ o } x = \frac{2}{m+1}$$



El área de la región \mathcal{R}_1 viene dada por

$$\int_0^{\frac{2}{m+1}} \left(2x - x^2 - mx^2\right) dx = \frac{4}{3(m+1)^2}$$

y el área de la región \mathcal{R}_2 viene dada por

$$\int_0^{\frac{2}{m+1}} mx^2 dx + \int_{\frac{2}{m+1}}^2 (2x - x^2) dx = \frac{4}{3} \left(1 - \frac{1}{(m+1)^2} \right)$$

Para que ellas sean iguales es necesario que $(m+1)^2=2$, pero como m>0 el valor deseado es $m=-1+\sqrt{2}$.

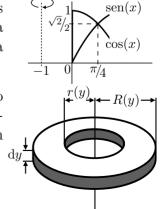
Pregunta 4. Considere la región acotada por las curvas y = sen(x), $y = \cos(x)$, el eje y y la recta vertical $x = \pi/4$. Sea S el sólido que se genera al hacer rotar esta región alrededor de la recta x = -1.

- a. (4 ptos.) Exprese el volumen del sólido S mediante el método de arandelas.
- b. (4 ptos.) Exprese el volumen del sólido S mediante el método de cascarones.
- c. (2 ptos.) Calcule el volumen del sólido S.

Solución: La región acotada por las curvas y = sen(x), y = cos(x), el eje y y la recta vertical $x = \pi/4$ está ilustrada en la figura a la derecha.

Para expresar el volumen mediante el método de arandelas hacemos cortes transversales. Para cada y entre 0 y 1 el diferencial de volumen viene dado por

$$dV = \pi \left(\left(R(y) \right)^2 - \left(r(y) \right)^2 \right) dy$$



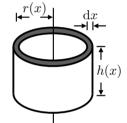
donde

$$r(y) \equiv 1$$
 y $R(y) = \begin{cases} 1 + \arccos(y) & \text{, si } y \in \left[\sqrt{2}/2, 1\right] \\ 1 + \arcsin(y) & \text{, si } y \in \left[0, \sqrt{2}/2\right] \end{cases}$

Así, el volumen viene dado por

$$\pi \int_{0}^{\sqrt{2}/2} \left(2 \operatorname{arcsen}(y) + \left(\operatorname{arcsen}(y)\right)^{2}\right) dy + \pi \int_{0}^{1} \left(2 \operatorname{arccos}(y) + \left(\operatorname{arccos}(y)\right)^{2}\right) dy$$

Para expresar el volumen mediante el método de cascarones hacemos cortes coaxiales. Para cada x entre 0 y $\pi/4$ el diferencial de volumen viene dado por



$$dV = 2\pi r(x) h(x) dx$$

donde

$$r(x) = 1 + x$$
 y $h(x) = \cos(x) - \sin(x)$

Así, el volumen viene dado por

$$2\pi \int_0^{\pi/4} (1+x)(\cos(x) - \sin(x)) dx$$

Finalmente, el volumen de sólido S es $\pi \left(-4 + 2\sqrt{2} + \frac{\sqrt{2}}{2}\pi \right)$.

Pregunta 5. (6 ptos.) Determine si la integral impropia $\int_{10}^{\infty} \frac{4x-2}{\sqrt{x^7-1}} dx$ es convergente.

Solución: Como $x \ge 10$ entonces $0 < x^6 < x^7 - 1$. Así,

$$\frac{4x-2}{\sqrt{x^7-1}} < \frac{4x}{\sqrt{x^7-1}} < \frac{4x}{\sqrt{x^6}} = \frac{4}{x^2}$$

Como $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ es convergente para p > 1, se tiene que $\int_{10}^{\infty} \frac{1}{x^{p}} dx$ también es convergente para p > 1. En particular, $4 \int_{10}^{\infty} \frac{1}{x^{2}} dx$ es convergente. Dado que $0 \le \frac{4x-2}{\sqrt{x^{7}-1}} \le \frac{4}{x^{2}}$ para todo $x \in [10,\infty)$, el Criterio de Comparación establece que $\int_{10}^{\infty} \frac{4x-2}{\sqrt{x^{7}-1}} dx$ también es convergente.